As a result of the paleomagnetic co-operation between Hungarian and Serbian specialists in the last decades a paleomagnetic paper was published about the Fruska Gora (Lesic et al., 2007) and an other one about the magnetic fabrics of the intrusive and extrusive magmatic rocks of the Kopaonik area (Lesic et al., 2013). During more recent years several overstep sequences were tested from the Western Vardar zone. The aim of our present study was to find out if the units belonging to the Inner Dinarides rotated in the same sense as the overstep sequences or different rotations occurred. For that reason we sampled 12 localities within the research area. Five of which represent Late Cretaceous sediments in the area of Tara Mt., while the others geographically distributed Triassic and Jurassic succession. The sampled localities belong to different thrust sheets.
We have investigated successive episodes of ocean-continent and continent–continent convergence in Western Serbia (Drina-Ivanjica thrust sheet). The coupled application of structural and petrological analyses with Illite Crystallinity measurements and K/Ar dating has revealed the timing and structural characteristics of multiple regional deformation phases, and allowed us to revise the origin of the different Triassic units outcropping in the study area. D1 tectonic burial was characterized by anchizonal metamorphism, dominantly WNW-verging isoclinal folding (F1), and related axial planar cleavage (S1) formation in the Paleozoic basement and the stratigraphic cover of the Drina-Ivanjica thrust sheet exposed along the northern rim of this thrust sheet. The timing of D1 deformation is constrained by K/Ar ages suggesting 135–150 Ma tectonic burial for the Drina-Ivanjica thrust sheet. D1 deformation and metamorphism is correlated with the closure of the Vardar ocean by top-W to NW ophiolite obduction and the underthrusting of the Adriatic distal passive margin below the oceanic upper plate. Since D1 structures are lacking in the southern occurrences of Triassic rocks within the study area it is proposed that this Triassic is may not be the original sedimentary cover of the Drina-Ivanjica Paleozoic basement. We propose that this southern Triassic originated from a more external Dinaridic thrust sheet and was transported to its present-day position by a top-NE backthrust presumably during late Early Cretaceous–Paleogene times. Map-scale, NW–SE striking D2 thrust faults and abundant NW–SE trending F2 folds observed in all units correspond to the general trend of the Dinaridic orogen and are attributed to the latest Cretaceous–Paleogene collision between Adria and Europe. Regional Latest Cretaceous–Paleogene shortening was followed by strike-slip tectonics (N–S shortening and perpendicular extension) and subsequent Miocene normal faulting in both orogen-parallel and orogen-perpendicular directions driven by slab rollback processes of the Carpathian-Dinaridic realm.