The hydrodynamics of a two-vent turbulent forced plume propagating in a linear stratification has been studied by a series of laboratory experiments using the two-tank method and the particle image velocimetry (PIV) technique. The velocity fields and turbulence characteristics of a two-vent plume under different source buoyancy flux, ambient stratification, and nozzle distance are analyzed quantitatively. The increase of maximum penetration of a two-vent plume is mainly due to the attenuation of buoyancy gradient caused by less entrainment of ambient fluid in the region between the two vents. The energy spectra do not exhibit a sizable range of the Kolmogorov −5/3 slope, indicating that no substantial inertial subrange is present in this small-scale plume in a linear stratification generated in the laboratory. Both turbulent kinetic energy and dissipation increase with the decrease of distance between the two plumes, indicating that the interaction, entrainment, and mixing in a two-vent plume stem greatly enhance energy production and dissipation. The maximum turbulent viscosity in a two-vent plume, however, presents a three-stage variation. An increase of viscosity in the second stage appears in the mixing region of the neutral buoyancy layer between the two plumes when the normalized distance L/Zmax is in the range of 0.3–0.6; this increase is attributed to flow rebound after overshooting and a strong entrainment and mixing in this region due to lateral flow convection. A new semiempirical formula for the maximum penetration and new scaling relationships for the maximum turbulent viscosity of a two-vent plume are proposed and verified by the PIV experimental data.
Understanding the dynamics of deep-sea hydrothermal plumes and the depositional pattern of hydrothermal particles is essential for tracking the submarine hydrothermal venting site, prospecting polymetallic sulfide resources, as well as deciphering biogeochemistry cycling of marine elements. In this paper, a numerical model of the deep-sea hydrothermal plume is established based on the topography and long-term current monitoring data of the Wocan-1 hydrothermal field (WHF-1), Carlsberg Ridge, Northwest Indian Ocean. The model allows for a reconstruction of the hydrothermal plume in terms of its structure, velocity field, and temperature field. The relationships between the maximum height of the rising plume and the background current velocity, and between the height of the neutral-buoyancy layer and the background current velocity are established, respectively. The transport patterns of the hydrothermal particles and their controlling factors are revealed. Using hydrothermal particles with a density of ~5000 kg/m3 (i.e., pyrite grains) as an example, it is found that pyrite larger than 1 mm can only be found near the venting site. Those in the size 0.3–0.5 mm can only be found within 137–240 m from the venting site, while those smaller than 0.2 mm can be transported over long distances of more than 1 km. Using the vertical temperature profiling data of WHF-1 obtained during the Jiaolong submersible diving cruise in March 2017, we reconstruct the past current velocity of 10 cm/s, similar to the current data retrieved from the observational mooring system. Our model and the findings contribute to a better understanding of the hydrothermal system of WHF-1, and provide useful information for tracing the hydrothermal vents, prospecting the submarine polymetallic sulfide resources, designing the long-term observation networks, and relevant studies on element cycling and energy budget.
In this paper, we conduct a comparative study on the mineralogy and geochemistry of metalliferous sediment collected near the active hydrothermal site (Wocan-1) and inactive hydrothermal site (Wocan-2) from Wocan Hydrothermal Field, on the Carlsberg Ridge (CR), northwest Indian Ocean. We aim to understand the spatial variations in the primary and post-depositional conditions and the intensity of hydrothermal circulations in the Wocan hydrothermal systems. Sediment samples were collected from six stations which includes TVG-07, TVG-08 (Wocan-1), TVG-05, TVG-10 (Wocan-2), TVG-12 and TVG-13 (ridge flanks). The mineralogical investigations show that sediment samples from Wocan-1 and Wocan-2 are composed of chalcopyrite, pyrite, sphalerite, barite, gypsum, amorphous silica, altered volcanic glass, Fe-oxides, and hydroxides. The ridge flank sediments are dominated by biogenic calcite and foraminifera assemblages. The bulk sediment samples of Wocan-1 have an elevated Fe/Mn ratio (up to ~1545), with lower U contents (<7.4 ppm) and U/Fe ratio (<~1.8 × 10−5). The sulfide separates (chalcopyrite, pyrite, and sphalerite) are enriched in Se, Co, As, Sb, and Pb. The calculated sphalerite precipitation temperature (Sph.PT) yields ~278 °C. The sulfur isotope (δ34S) analysis returned a light value of 3.0–3.6‰. The bulk sediment samples of Wocan-2 have a lower Fe/Mn ratio (<~523), with high U contents (up to 19.6 ppm) and U/Fe ratio (up to ~6.2 × 10−5). The sulfide separates are enriched in Zn, Cu, Tl, and Sn. The calculated Sph.PT is ~233 °C. The δ34S returned significant values of 4.1–4.3‰ and 6.4–8.7‰ in stations TVG-10 and TVG-05, respectively. The geochemical signatures (e.g., Fe/Mn and U/Fe ratio, mineral chemistry of sulfides separates, and S-isotopes and Sph.PT) suggest that sediment samples from Wocan-1 are located near intermediate–high temperature hydrothermal discharge environments. Additionally, relatively low δ34S values exhibit a lower proportion (less than 20%) of seawater-derived components. The geochemical signatures suggest that sediment samples from Wocan-2 has undergone moderate–extensive oxidation and secondary alterations by seawater in a low–intermediate temperature hydrothermal environments. Additionally, the significant δ34S values of station TVG-05 exhibit a higher estimated proportion (up to 41%) of seawater-derived components. Our results showed pervasive hydrothermal contributions into station TVG-08 relative to TVG-07, it further showed the increased process of seafloor weathering at TVG-05 relative to TVG-10.