Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction.From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model.Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation between classes; longitudinal regression modelling of the CRS-R data identified distinct outcome evolution, but not earlier than 19 days. Second, the MBT yielded a significant outcome predictability in the acute phase (p<0.02, sensitivity>0.81). Third, a statistical comparison of the CRS-R subscales weighted by MBT became significantly predictive for DOC outcome (p<0.02).The association of MBT and CRS-R scoring improves significantly the evaluation of consciousness and the predictability of outcome in the acute phase. Subtle motor behaviour assessment provides accurate insight into the amount and the content of consciousness even in the case of cognitive motor dissociation.
Percepts and words can be decoded from distributed neural activity measures. However, the existence of widespread representations might conflict with the more classical notions of hierarchical processing and efficient coding, which are especially relevant in speech processing. Using fMRI and magnetoencephalography during syllable identification, we show that sensory and decisional activity colocalize to a restricted part of the posterior superior temporal gyrus (pSTG). Next, using intracortical recordings, we demonstrate that early and focal neural activity in this region distinguishes correct from incorrect decisions and can be machine-decoded to classify syllables. Crucially, significant machine decoding was possible from neuronal activity sampled across different regions of the temporal and frontal lobes, despite weak or absent sensory or decision-related responses. These findings show that speech-sound categorization relies on an efficient readout of focal pSTG neural activity, while more distributed activity patterns, although classifiable by machine learning, instead reflect collateral processes of sensory perception and decision.
Auditory cortex volume and shape differences have been observed in the context of phonetic learning, musicianship and dyslexia. Heschl's gyrus, which includes primary auditory cortex, displays large anatomical variability across individuals and hemispheres. Given this variability, manual labelling is the gold standard for segmenting HG, but is time consuming and error prone. Our novel toolbox, called 'Toolbox for the Automated Segmentation of HG' or TASH, automatically segments HG in brain structural MRI data, and extracts measures including its volume, surface area and cortical thickness. TASH builds upon FreeSurfer, which provides an initial segmentation of auditory regions, and implements further steps to perform finer auditory cortex delineation. We validate TASH by showing significant relationships between HG volumes obtained using manual labelling and using TASH, in three independent datasets acquired on different scanners and field strengths, and by showing good qualitative segmentation. We also present two applications of TASH, demonstrating replication and extension of previously published findings of relationships between HG volumes and (a) phonetic learning, and (b) musicianship. In sum, TASH effectively segments HG in a fully automated and reproducible manner, opening up a wide range of applications in the domains of expertise, disease, genetics and brain plasticity.
Mind blanking (MB) is a waking state during which we do not report any mental content. The phenomenology of MB challenges the view of a constantly thinking mind. Here, we comprehensively characterize the MB’s neurobehavioral profile with the aim to delineate its role during ongoing mentation. Using functional MRI experience sampling, we show that the reportability of MB is less frequent, faster, and with lower transitional dynamics than other mental states, pointing to its role as a transient mental relay. Regarding its neural underpinnings, we observed higher global signal amplitude during MB reports, indicating a distinct physiological state. Using the time-varying functional connectome, we show that MB reports can be classified with high accuracy, suggesting that MB has a unique neural composition. Indeed, a pattern of global positive-phase coherence shows the highest similarity to the connectivity patterns associated with MB reports. We interpret this pattern’s rigid signal architecture as hindering content reportability due to the brain’s inability to differentiate signals in an informative way. Collectively, we show that MB has a unique neurobehavioral profile, indicating that nonreportable mental events can happen during wakefulness. Our results add to the characterization of spontaneous mentation and pave the way for more mechanistic investigations of MB’s phenomenology.
Very preterm (VPT) young adolescents are at high risk of executive, behavioural and socio-emotional difficulties. Previous research has shown significant evidence of the benefits of mindfulness-based intervention (MBI) on these abilities. This study aims to assess the association between the effects of MBI on neurobehavioral functioning and changes in white-matter microstructure in VPT young adolescents who completed an 8-week MBI program. Neurobehavioural assessments (i.e., neuropsychological testing, parents- and self-reported questionnaires) and multi-shell diffusion MRI were performed before and after MBI in 32 VPT young adolescents. Combined diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) measures were extracted on well-defined white matter tracts (TractSeg). A multivariate data-driven approach (partial least squares correlation) was used to explore associations between MBI-related changes on neurobehavioural measures and microstructural changes. The results showed an enhancement of global executive functioning using parent-reported questionnaire after MBI that was associated with a general pattern of increase in fractional anisotropy (FA) and decrease in axonal dispersion (ODI) in white-matter tracts involved in executive processes. Young VPT adolescents with lower gestational age at birth showed the greatest gain in white-matter microstructural changes after MBI.
Abstract Electroencephalography (EEG) of brain activity can be represented in terms of dynamically changing topographies (microstates). Notably, spontaneous brain activity recorded at rest can be characterized by four distinctive topographies. Despite their well-established role during resting state, their implication in the generation of motor behavior is debated. Evidence of such a functional role of spontaneous brain activity would provide support for the design of novel and sensitive biomarkers in neurological disorders. Here we examined whether and to what extent intrinsic brain activity contributes and plays a functional role during natural motor behaviors. For this we first extracted subject-specific EEG microstates and muscle synergies during reaching-and-grasping movements in healthy volunteers. We show that, in every subject, well-known resting-state microstates persist during movement execution with similar topographies and temporal characteristics, but are supplemented by novel task-related microstates. We then show that the subject-specific microstates’ dynamical organization correlates with the activation of muscle synergies and can be used to decode individual grasping movements with high accuracy. These findings provide first evidence that spontaneous brain activity encodes detailed information about motor control, offering as such the prospect of a novel tool for the definition of subject-specific biomarkers of brain plasticity and recovery in neuro-motor disorders.
Abstract In a companion paper by Cohen-Adad et al . we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.