One of the main signatures of short duration storms is given by Depth–Duration–Frequency (DDF) curves. In order to provide reliable estimates for small river basins or urban catchments, generally characterized by short concentration times, in this study the performances of different DDF curves proposed in literature are described and compared, in order to provide insights on the selection of the best approach in design practice, with particular reference to short durations. With this aim, 28 monitoring stations with time series of annual maximum rainfall depth characterized by sample size greater than 20 were selected in the Northern part of the Puglia region (South-Eastern Italy). In order to test the effect of the investigated DDF curves in reproducing the design peak discharge corresponding to an observed expected rainfall event, the Soil Conservation (SCS) curve number (CN) approach is exploited, generating peak discharges according to different selected combinations of the main parameters that control the critical rainfall duration. Results confirm the good reliability of the DDF curves with three parameters to adapt on short events both in terms of rainfall depth and in terms of peak discharge and, in particular, for durations up to 30 min, the three-parameter DDF curves always perform better than the two-parameter DDF.
This paper presents new physical model experiments on tsunamis generated by landslides at the coast of a conical island. The experiments have been carried out in a large wave tank; the radius of the island coastline and the falling height of the landslide have been varied during the experimental campaign. The landslide is reproduced by a solid body shaped as a half of an ellipsoid. Tsunami runup is measured using special wave gauges; a detailed analysis of the runup along the coastline is presented, with special attention to the role of each wave in the packet and to the evolution of the envelope of the first group of waves.
Sea wave reflection from coastal protection structures is one of the main issues in the coastal design process. Several empirical formulas have been proposed so far to predict reflection coefficient from rubble mound breakwaters and smooth slopes. The aim of this study is to investigate wave reflection from a rubble mound structure placed in front of a vertical concrete seawall. Several experimental tests were performed on a two-dimensional wave flume by reproducing on a rubble mound structure with a steep single primary layer armored with a novel artificial unit. A new approach for the prediction of the reflection coefficient based on dimensional analysis is also proposed, and a new empirical equation is derived. The performance of the proposed equation was compared with widespread existing formulas, and a good accuracy was found.
Bruno, M.F.; Molfetta M.G.; Mossa, M., Nutricato, R., Morea, A., and Chiaradia, M.T., 2016. Coastal observation through Cosmo-SkyMed high-resolution SAR images. In: Vila-Concejo, A.; Bruce, E.; Kennedy, D.M., and McCarroll, R.J. (eds.), Proceedings of the 14th International Coastal Symposium (Sydney, Australia). Journal of Coastal Research, Special Issue, No. 75, pp. 795–799. Coconut Creek (Florida), ISSN 0749-0208.The study deals with the application and further improvement of an advanced Earth Observation system, named COSMO-Beach, developed for semi-automatic shoreline extraction and coastal morphology identification. The system exploits SAR Single-Look-Complex data acquired by the COSMO-SkyMed constellation, which is able to provide X-band images with a short revisiting time. The implemented procedures have been tested over a very popular beach in Apulia Region (Italy), affected by erosion problems induced by human activities. The outcomes of the COSMO-Beach system are presented and discussed.
The traditional approach for coastal monitoring consists in ground investigations that are burdensome both in terms of logistics and costs, on a national or even regional scale. Earth Observation (EO) techniques can represent a cost-effective alternative for a wide scale coastal monitoring. Thanks to the all-weather day/night radar imaging capability and to the nationwide acquisition plan named MapItaly, devised by the Italian Space Agency and active since 2010, COSMO-SkyMed (CSK) constellation is able to provide X-band images covering the Italian territory. However, any remote sensing approach must be accurately calibrated and corrected taking into account the marine conditions. Therefore, in situ data are essential for proper EO data selection, geocoding, tidal corrections and validation of EO products. A combined semi-automatic technique for coastal risk assessment and monitoring, named COSMO-Beach, is presented here, integrating ground truths with EO data, as well as its application on two different test sites in Apulia Region (South Italy). The research has shown that CSK data for coastal monitoring ensure a shoreline detection accuracy lower than image pixel resolution, and also providing several advantages: low-cost data, a short revisit period, operational continuity and a low computational time.
A new system for estimating the synthetic parameters of sea states during physical investigations has been implemented. The technique proposed herein is based on stereographic analysis of digital images acquired with optical sensors. A series of ad hoc floating markers has been made and properly moored to the bottom of a large wave tank to estimate the synthetic parameters of generated waves. The implemented acquisition system and the proposed algorithm provide automatic recognition of all markers by a pair of optical sensors that synchronously captures their instantaneous location and tracks their movements over time. After transformation from the image to the real-world coordinates, water surface elevation time series have been obtained. Several experimental tests have been carried out to assess the feasibility and reliability of the proposed approach. The estimated wave synthetic parameters have been then compared with those obtained by employing standard resistive probes. The deviation were found to be equal to ~6% for the significant wave height and 1% for peak, mean, and significant wave periods.