We investigated the mechanisms leading to rapid death of corals when exposed to runoff and resuspended sediments, postulating that the killing was microbially mediated. Microsensor measurements were conducted in mesocosm experiments and in naturally accumulated sediment on corals. In organic-rich, but not in organic-poor sediment, pH and oxygen started to decrease as soon as the sediment accumulated on the coral. Organic-rich sediments caused tissue degradation within 1 d, whereas organic-poor sediments had no effect after 6 d. In the harmful organic-rich sediment, hydrogen sulfide concentrations were low initially but increased progressively because of the degradation of coral mucus and dead tissue. Dark incubations of corals showed that separate exposures to darkness, anoxia, and low pH did not cause mortality within 4 d. However, the combination of anoxia and low pH led to colony death within 24 h. When hydrogen sulfide was added after 12 h of anoxia and low pH, colonies died after an additional 3 h. We suggest that sedimentation kills corals through microbial processes triggered by the organic matter in the sediments, namely respiration and presumably fermentation and desulfurylation of products from tissue degradation. First, increased microbial respiration results in reduced O 2 and pH, initiating tissue degradation. Subsequently, the hydrogen sulfide formed by bacterial decomposition of coral tissue and mucus diffuses to the neighboring tissues, accelerating the spread of colony mortality. Our data suggest that the organic enrichment of coastal sediments is a key process in the degradation of coral reefs exposed to terrestrial runoff.
Vestimentiferan Tws colonize hydrothermal vents and cold seeps worldwide. They lack a digestive system and gain nutrition from endosymbiotic sulfur-oxidizing bacteria. It is currently assumed that vestimentiferan Tws harbour only a single endosymbiont type. A few studies found indications for additional symbionts, but conclusive evidence for a multiple symbiosis is still missing. We investigated Tws from Marsili Seamount, a hydrothermal vent in the Mediterranean Sea. Molecular and morphological analyses identified the Tws as Lamellibrachia anaximandri. 16S ribosomal RNA clone libraries revealed two distinct gammaproteobacterial phylotypes that were closely related to sequences from other Lamellibrachia symbionts. Catalysed reporter deposition fluorescence in situ hybridization with specific probes showed that these sequences are from two distinct symbionts. We also found two variants of key genes for sulfur oxidation and carbon fixation, suggesting that both symbiont types are autotrophic sulfur oxidizers. Our results therefore show that vestimentiferans can host multiple co-occurring symbiont types. Statistical analyses of vestimentiferan symbiont diversity revealed that host genus, habitat type, water depth and geographic region together accounted for 27% of genetic diversity, but only water depth had a significant effect on its own. Phylogenetic analyses showed a clear grouping of sequences according to depth, thus confirming the important role water depth played in shaping vestimentiferan symbiont diversity.
Abstract. We investigated light, water velocity, and CO2 as drivers of primary production in Mediterranean seagrass (Posidonia oceanica) meadows and neighboring bare sands using the aquatic eddy covariance technique. Study locations included an open-water meadow and a nearshore meadow, the nearshore meadow being exposed to greater hydrodynamic exchange. A third meadow was located at a CO2 vent. We found that, despite the oligotrophic environment, the meadows had a remarkably high metabolic activity, up to 20 times higher than the surrounding sands. They were strongly autotrophic, with net production half of gross primary production. Thus, P. oceanica meadows are oases of productivity in an unproductive environment. Secondly, we found that turbulent oxygen fluxes above the meadow can be significantly higher in the afternoon than in the morning at the same light levels. This hysteresis can be explained by the replenishment of nighttime-depleted oxygen within the meadow during the morning. Oxygen depletion and replenishment within the meadow do not contribute to turbulent O2 flux. The hysteresis disappeared when fluxes were corrected for the O2 storage within the meadow and, consequently, accurate metabolic rate measurements require measurements of meadow oxygen content. We further argue that oxygen-depleted waters in the meadow provide a source of CO2 and inorganic nutrients for fixation, especially in the morning. Contrary to expectation, meadow metabolic activity at the CO2 vent was lower than at the other sites, with negligible net primary production.
Mental disorders among children and adolescents pose a significant global challenge. The exposome framework covering the totality of internal, social and physical exposures over a lifetime provides opportunities to better understand the causes of and processes related to mental health, and cognitive functioning. The paper presents a conceptual framework on exposome, mental health, and cognitive development in children and adolescents, with potential mediating pathways, providing a possibility for interventions along the life course. The paper underscores the significance of adopting a child perspective to the exposome, acknowledging children's specific vulnerability, including differential exposures, susceptibility of effects and capacity to respond; their susceptibility during development and growth, highlighting neurodevelopmental processes from conception to young adulthood that are highly sensitive to external exposures. Further, critical periods when exposures may have significant effects on a child's development and future health are addressed. The paper stresses that children's behaviour, physiology, activity pattern and place for activities make them differently vulnerable to environmental pollutants, and calls for child-specific assessment methods, currently lacking within today's health frameworks. The importance of understanding the interplay between structure and agency is emphasized, where agency is guided by social structures and practices and vice-versa. An intersectional approach that acknowledges the interplay of social and physical exposures as well as a global and rural perspective on exposome is further pointed out. To advance the exposome field, interdisciplinary efforts that involve multiple scientific disciplines are crucial. By adopting a child perspective and incorporating an exposome approach, we can gain a comprehensive understanding of how exposures impact children's mental health and cognitive development leading to better outcomes.
In many seagrass sediments, lucinid bivalves and their sulfur-oxidizing symbionts are thought to underpin key ecosystem functions, but little is known about their role in nutrient cycles, particularly nitrogen. We used natural stable isotopes, elemental analyses, and stable isotope probing to study the ecological stoichiometry of a lucinid symbiosis in spring and fall. Chemoautotrophy appeared to dominate in fall, when chemoautotrophic carbon fixation rates were up to one order of magnitude higher as compared with the spring, suggesting a flexible nutritional mutualism. In fall, an isotope pool dilution experiment revealed carbon limitation of the symbiosis and ammonium excretion rates up to tenfold higher compared with fluxes reported for nonsymbiotic marine bivalves. These results provide evidence that lucinid bivalves can contribute substantial amounts of ammonium to the ecosystem. Given the preference of seagrasses for this nitrogen source, lucinid bivalves' contribution may boost productivity of these important blue carbon ecosystems.
The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition are affected by the plastic type and habitat. Further, it reveals that already within two weeks biodegradable plastic shows signs of degradation in the benthic and pelagic habitat.
AbstractEnvironmental policy is characterised by complexity, in causes and effects, resulting in various combinations of policy instruments. However, evaluating these policy instrument mixes and assessing their effectiveness is difficult because of a lack of methodological approaches. This paper therefore proposes a methodology which comprises: (a) describing the underlying policy theory; (b) describing the policy instruments; (c) analysing goal attainment; and (d) evaluating effectiveness, focusing on coverage of points of intervention, steering power of policy instruments and coherence of the policy instruments mix. The methodology is illustrated with an evaluation of noise policy in the Netherlands – a typical complex policy domain in which a mix of policy instruments has been in place for decades, and thus provides a good empirical case.Keywords: policy instrumentseffectivenessevaluation methodologyenvironmental policy Notes1. Most literature on policy instruments focuses on ex ante evaluations of policy instruments to be implemented in a specific policy subsystem (e.g. Hellegers and van Ierland Citation2003 on agricultural groundwater extraction; Cubbage, Harou, and Sills Citation2007, and van Gossum, Arts, and Verheyen Citation2012 on forest policy; Stavins Citation1997, and Grazi and van den Bergh Citation2008 on climate change adaptation). These studies assess the (expected) effectiveness through comparison of single instruments. However, an evaluation of the (presumed or, in the case of ex post evaluations, realised) effectiveness of the combined instruments, is uncommon.2. Immission level is the level of noise at the receiver.3. Lden stands for average sound pressure levels over all days, evenings and nights in a year.4. Emission is the noise level at the noise source.
Noise exposure has harmful effects on human health. Despite policy on the prevention and reduction of noise, the environmental burden is increasing, specifically due to road traffic noise. Noise policy in the Netherlands is organised in a rather complex way, with different legal frameworks for the various sources of noise. Whereas noise limits have frequently been adjusted in the traffic noise policy subsystem, the industrial and aviation noise policy subsystems are characterised by stability in norm setting. This paper aims to explain the differences in dynamics within the noise policy subsystems, by applying the Advocacy Coalition Framework (ACF). We conclude that the dynamics in the traffic noise policy subsystem is mainly due to two adversary coalitions advocating legislative arrangements to accommodate respective spatial claims. The stability in industrial and aircraft noise policy subsystems is explained by 'balanced' coalitions and a dominant economy coalition, respectively. We identified the (only) path to policy change in Dutch noise policy to be cross-coalition learning in which 'policy brokerage' might be crucial. We conclude with some reflections on the use of ACF in empirical research and the role of professional forums and institutional arrangements in stability and/or change in policy subsystems.